

TA-COMPACT-P

Combined control & balancing valves for small terminal units

Pressure independent balancing and control valve (PIBCV)

Engineering GREAT Solutions

TA-COMPACT-P

The pressure independent balancing and control valve TA-COMPACT-P ensures optimum performance over a long life. Adjustable maximum flow enables design flow and eliminates over flows for accurate hydronic control. The TA-COMPACT-P together with our balancing instruments enables advanced measuring and diagnostics.

Key features

- Precise hydronic balancing Smoothly adjustable setting of max. flow prevents over flow through terminal unit.
- Installations without limits Slim and compact shape simplifies installation, one side access to all functions simplifies operation.
- Full control of the system Exact flow measuring and unique diagnostic functions for ultimate energy savings and highly reliable system.
- High reliability AMETAL[®] and stainless steel guarantees high corrosion resistance and reduces the risk of leakage.

Technical description

Application:

Heating and cooling systems.

Functions:

Control Pre-setting (max. flow) Differential pressure control Measuring (△H, T, q) Shut-off (for isolation during system maintenance – see also Leakage rate)

Dimensions: DN 10-32

Pressure class: PN 16

Differential pressure (ΔpV):

Max. differential pressure (ΔpV_{max}) : 400 kPa = 4 bar Min. differential pressure (ΔpV_{min}) : DN 10-20: 15 kPa = 0,15 bar DN 25-32: 23 kPa = 0,23 bar (Valid for position 10, fully open. Other positions will require lower differential pressure, check with the software HySelect.)

 ΔpV_{max} = The maximum allowed pressure drop over the valve, to fulfill all stated performances.

 ΔpV_{min} = The minimum recommended pressure drop over the valve, for proper differential pressure control.

Flow range:

The flow (q_{max}) can be set within the range: DN 10: 21,5 - 120 l/h DN 15 LF: 44 - 245 l/h DN 15: 88 - 470 l/h DN 20: 210 - 1150 l/h DN 25: 370 - 2150 l/h DN 32: 800 - 3700 l/h $q_{max} = l/h$ at each setting and fully open valve plug. LF = Low flow

Temperature:

Max. working temperature: 90°C Min. working temperature: 0°C

Media:

Water or neutral fluids, water-glycol mixtures.

Lift:

4 mm

Leakage rate:

Leakage flow \leq 0,01% of max. q_{max} (setting 10) and correct flow direction. (Class IV according to EN 60534-4).

Characteristics:

Linear, best suited for on/off control.

Material:

Valve body: AMETAL® Valve insert: AMETAL® Valve plug: Stainless steel Spindle: Stainless steel Spindle seal: EPDM O-ring Ap insert: PPS Membrane: EPDM and HNBR Springs: Stainless steel O-rings: EPDM

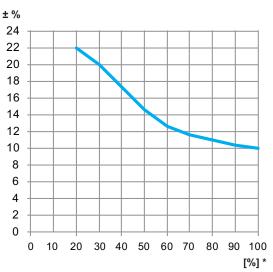
AMETAL[®] is the dezincification resistant alloy of IMI Hydronic Engineering.

Marking:

TA, IMI, PN 16, DN and flow direction arrow. Grey handwheel: TA-COMPACT-P and DN. For low flow version also LF.

Connection:

Male thread according to ISO 228.


Connection to actuator: M30x1,5

Actuators:

See separate information on EMO T.

Measuring accuracy

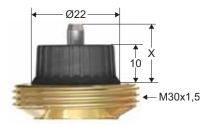
Maximum flow deviation at different settings

*) Setting (%) of fully open valve.

Correction factors

The flow calculations are valid for water (+20°C). For other liquids with approximately the same viscosity as water (\leq 20 cSt = 3°E=100S.U.), it is only necessary to compensate for the specific density. However, at low temperatures, the viscosity increases and laminar flow may occur in the valves. This causes

a flow deviation that increases with small valves, low settings and low differential pressures. Correction for this deviation can be made with the software HySelect or directly in our balancing instruments.


Noise

In order to avoid noise in the installation the valve must be correctly installed and the water de-aerated.

Actuators

Actuator EMO T

For more details of EMO T, see separate catalogue leaflet. TA-COMPACT-P is developed to work together with the EMO T actuator. Actuators of other brands require; Working range: X (closed - fully open) = 11,6 - 15,8 Closing force: Min. 125 N (max. 500 N)

IMI Hydronic Engineering will not be held responsible for the control function if actuators other brand than IMI TA are used.

Max. recommended pressure drop ($\Delta p \textbf{V}$) for value and actuator combination

The maximum recommended pressure drop over a valve and actuator combination for close off ($\Delta p V_{close}$) and to fulfill all stated performances ($\Delta p V_{max}$).

DN	EMO T * [kPa]
10	
15	
20	400
25	
32	

*) Closing force 125 N.

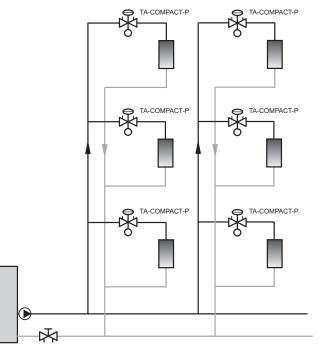
 ΔpV_{close} = The maximum pressure drop that the valve can close against from an opened position, with a specified force (actuator) without exceeding stated leakage rate.

 ΔpV_{max} = The maximum allowed pressure drop over the valve, to fulfill all stated performances.

Sizing

1. Choose the smallest valve size that can obtain the design flow with some safety margin, see "q_{max} values". The setting should be as open as possible.

\mathbf{q}_{\max} values

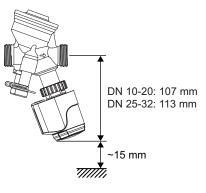

Position									
1	2	3	4	5	6	7	8	9	10
21,5	39,5	54,0	68,5	80,0	91,0	99,0	107	113	120
44,0	71,0	97,0	123	148	170	190	210	227	245
88,0	150	200	248	295	340	380	420	450	470
210	335	460	575	680	780	890	990	1080	1150
370	610	830	1050	1270	1490	1720	1870	2050	2150
800	1220	1620	2060	2450	2790	3080	3350	3550	3700
	44,0 88,0 210 370	21,5 39,5 44,0 71,0 88,0 150 210 335 370 610	21,5 39,5 54,0 44,0 71,0 97,0 88,0 150 200 210 335 460 370 610 830	21,539,554,068,544,071,097,012388,01502002482103354605753706108301050	1234521,539,554,068,580,044,071,097,012314888,015020024829521033546057568037061083010501270	12345621,539,554,068,580,091,044,071,097,012314817088,0150200248295340210335460575680780370610830105012701490	123456721,539,554,068,580,091,099,044,071,097,012314817019088,01502002482953403802103354605756807808903706108301050127014901720	1234567821,539,554,068,580,091,099,010744,071,097,012314817019021088,015020024829534038042021033546057568078089099037061083010501270149017201870	12345678921,539,554,068,580,091,099,010711344,071,097,012314817019021022788,01502002482953403804204502103354605756807808909901080370610830105012701490172018702050

 $\boldsymbol{q}_{\text{max}} = \text{I/h}$ at each setting and fully open value plug.

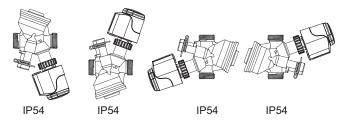
LF = Low flow

Installation

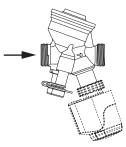
Application example



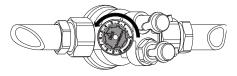
Installation of actuator EMO T

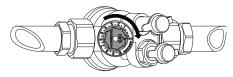

15-400 kPa or 23-400 kPa.

Approx. 15 mm of free space is required above the actuator.


2. Check that the available ΔpV is within the working range

TA-COMPACT-P + EMO T

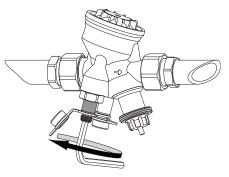

Flow direction


Operating function

Setting

1. Turn the setting wheel to desired value, e.g. 5.0.

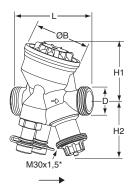
Shut-off



1. Turn the setting wheel clockwise to X.

Measuring q

- 1. Remove any actuator.
- 2. Connect IMI TA balancing instrument to the measuring points.
- 3. Input the valve type, size and setting and the actual flow is displayed.


Measuring ∆H

- 1. Remove any actuator.
- 2. Close the valve according to "Shut-off".
- 3. Bypass the Δp part by opening the bypass spindle ${\approx}1$ turn anticlockwise, with a 5 mm Allen key.
- 4. Connect IMI TA balancing instrument to the measuring points and measure.

Important! Close the bypass spindle after the measurement is completed.

Articles

Male thread Threads according to ISO 228

DN	D	L	H1	H2	В	q _{max} [l/h]	Kg	EAN	Article No
10	G1/2	74	55	55	54	120	0,53	7318794013308	52 164-010
15 LF	G3/4	74	55	55	54	245	0,54	7318794025202	52 164-115
15	G3/4	74	55	55	54	470	0,54	7318794013407	52 164-015
20	G1	85	64	55	64	1150	0,69	7318794013506	52 164-020
25	G1 1/4	93	64	61	64	2150	0,79	7318794013605	52 164-025
32	G1 1/2	112	78	61	78	3700	1,5	7318794013704	52 164-032

LF = Low flow*) Connection to actuator.

 \rightarrow = Flow direction

Connections

With female thread

Threads according to ISO 228. Thread length according to ISO 7-1. Swivelling nut

Valve DN	D	D1	L*	EAN	Article No
10	G1/2	G3/8	21	7318794016804	52 163-010
15	G3/4	G1/2	21	7318794016903	52 163-015
20	G1	G3/4	23	7318794017009	52 163-020
25	G1 1/4	G1	23	7318794017108	52 163-025
32	G1 1/2	G1 1/4	31	7318794017207	52 163-032

With male thread

Threads according to ISO 7-1. Swivelling nut

Valve DN	D	D1	L*	EAN	Article No
10	-	-	-	-	-
15	G3/4	R1/2	29	4024052516612	0601-02.350
20	G1	R3/4	32,5	4024052516810	0601-03.350
25	G1 1/4	R1	35	4024052517015	0601-04.350
32	G1 1/2	R1 1/4	38,5	4024052517213	0601-05.350

Welding connection Swivelling nut

Valve DN	D	Pipe DN	L*	EAN	Article No
10	G1/2	10	30	7318792748400	52 009-010
15	G3/4	15	36	7318792748509	52 009-015
20	G1	20	40	7318792748608	52 009-020
25	G1 1/4	25	40	7318792748707	52 009-025
32	G1 1/2	32	40	7318792748806	52 009-032

*) Fitting length (from the gasket surface to the end of the connection).

Soldering connection

Swivelling nut

D	Pipe Ø	L*	EAN	Article No
G1/2	10	10	7318792749100	52 009-510
G1/2	12	11	7318792749209	52 009-512
G3/4	15	13	7318792749308	52 009-515
G3/4	16	13	7318792749407	52 009-516
G1	18	15	7318792749506	52 009-518
G1	22	18	7318792749605	52 009-522
G1 1/4	28	21	7318792749704	52 009-528
G1 1/2	35	26	7318792749803	52 009-535
	G1/2 G3/4 G3/4 G1 G1 G1 G1 1/4	G1/2 10 G1/2 12 G3/4 15 G3/4 16 G1 18 G1 22 G1 1/4 28	G1/2 10 10 G1/2 12 11 G3/4 15 13 G3/4 16 13 G1 18 15 G1 22 18 G1 1/4 28 21	G1/2 10 10 7318792749100 G1/2 12 11 7318792749209 G3/4 15 13 7318792749308 G3/4 16 13 7318792749407 G1 18 15 7318792749506 G1 22 18 7318792749605 G1 1/4 28 21 7318792749704

Connection with smooth end

For connection with press coupling Swivelling nut

Valve DN	D	Pipe Ø	L*	EAN	Article No
10	G1/2	12	35	7318793810502	52 009-312
15	G3/4	15	39	7318793810601	52 009-315
20	G1	18	44	7318793810700	52 009-318
20	G1	22	48	7318793810809	52 009-322
25	G1 1/4	28	53	7318793810908	52 009-328
32	G1 1/2	35	59	7318793811004	52 009-335

Compression connection

Support bushes shall be used, for more information see catalogue leaflet FPL. Should not be used with PEX-pipes. Chrome plated

Valve DN	D	Pipe Ø	L**	EAN	Article No
10	G1/2	8	16	7318793620002	53 319-208
10	G1/2	10	17	7318793620101	53 319-210
10	G1/2	12	17	7318793620200	53 319-212
10	G1/2	15	20	7318793620309	53 319-215
10	G1/2	16	25	7318793620408	53 319-216
15	G3/4	15	27	7318793705006	53 319-615
15	G3/4	18	27	7318793705105	53 319-618
15	G3/4	22	27	7318793705204	53 319-622
20	G1	28	29	7318793705402	53 319-928

 $^{\ast})$ Fitting length (from the gasket surface to the end of the connection).

**) Over all length L refers to unassembled coupling.

Accessories

Protection cap For TA-COMPACT-P/-DP, TBV-C/-CM/-CMP, KTCM 512.

 EAN
 Article No

 7318793961105
 52 143-100

The products, texts, photographs, graphics and diagrams in this document may be subject to alteration by IMI Hydronic Engineering without prior notice or reasons being given. For the most up to date information about our products and specifications, please visit www.imi-hydronic.com.